

Date: 09-11-2024

 Dept. No.

Max. : 100 Marks

Time: 01:00 pm-04:00 pm

SECTION A – K1 (CO1)

1	Answer ALL the questions	(5 x 1 = 5)
1	Answer the following	
a)	When is a linear operator defined on vector space X considered invertible?	
b)	Find the outer measure of a finite set.	
c)	Identify the positive part of the function $f(x) = x^2 - 1$ defined in $[-2, 2]$.	
d)	Let $X = [0, 1]$ and define $f: X \rightarrow \mathbb{R}$ by $f(x) = x^{-1/3}$, show that $f \in L^1(\mu)$ but $f \notin L^3(\mu)$.	
e)	State Hahn decomposition theorem.	

SECTION A – K2 (CO1)

2	Answer ALL the questions	(5 x 1 = 5)
2	Multiple Choice Questions	
a)	The directional derivative of the function $f = 4xy^3 - 3x^2y^2z^2$ at the point $(2, -1, 2)$ along z -axis is (i) 6 (ii) 20 (iii) $\frac{1}{6}$ (iv) -48	
b)	Which of the following is a σ -algebra on $X = [1, 2, 3, 4]$ (i) $\{\emptyset, X\}$ (ii) $\{\emptyset, [1], [2], [3], [4], [1, 2, 3, 4]\}$ (iii) $\{\emptyset, [1], [1, 3], [1, 2, 4], [1, 2, 3, 4]\}$ (iv) $\{\emptyset, [1], [2, 3, 4], [1, 2, 3, 4]\}$.	
c)	A real-valued function $\varphi(x)$ is simple if (i) $\varphi(x)$ is finite-valued. (ii) $\varphi(x)$ is non-negative and finite-valued. (iii) $\varphi(x)$ is finite-valued and measurable. (iv) $\varphi(x)$ is non-negative, taking only finite number of distinct values.	
d)	A triple $[X, S, \mu]$ is called a measure space if (i) $[X, S]$ is a measurable space (ii) μ is a measure on S (iii) $[X, S]$ is a measurable space and μ is a measure on S (iv) None of the above.	
e)	For measurable spaces $[X, S]$ and $[Y, T]$, $A \times B$ is a measurable rectangle if (i) $A \subseteq X, B \subseteq Y$ and $A \in S, B \in T$. (ii) $A \subseteq X, B \subseteq Y$ and $A \notin S, B \in T$. (iii) $A \subseteq X, B \subseteq Y$ and $A \in S, B \notin T$. (iv) $A \subseteq X, B \subseteq Y$ and $A \notin S, B \notin T$.	

SECTION B – K3 (CO2)

3	Answer any THREE of the following	(3 x 10 = 30)
3	Define $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by $f(x, y) = \begin{cases} (x, y) & \text{if } (x, y) \neq (0, 0) \\ (0, 0) & \text{if } (x, y) = (0, 0) \end{cases}$. Then verify the following: (i) Directional derivative of f at $(0, 0)$ exists. (ii) The function f is differentiable at $(0, 0)$. (iii) Derivative of f at $(0, 0)$ is invertible or not.	
4	Justify the claim: All intervals are measurable.	

5	Calculate the value of $\int_0^1 \frac{x^{1/3}}{1-x} \log \frac{1}{x} dx$.
---	---

6	Examine whether $\ f+g\ _p \leq \ f\ _p + \ g\ _p$ for $p \geq 1$ and $f, g \in L^p(\mu)$. Also, state the condition for equality and prove it.
7	For a signed measure, exhibit that a countable union of positive sets is a positive set.

SECTION C – K4 (CO3)

	Answer any TWO of the following (2 x 12.5 = 25)
8	Determine if the class of Lebesgue measurable sets is a σ -algebra.
9	Let $\{f_n\}$ be a sequence of measurable functions such that $ f_n \leq g$, where g is integrable and let $\lim f_n = f$ a.e. Then show that f is integrable and $\lim \int f_n dx = \int f dx$.
10	For a measure μ be a defined on a σ -ring S and class $\bar{S} = \{E \Delta N : \text{for any sets } E, N \text{ with } E \Delta N \text{ is contained in some set } S \text{ of zero measure}\}$, define the set function $\bar{\mu}$ by $\bar{\mu}(E \Delta N) = \mu(E)$. Prove that \bar{S} is a σ -ring and $\bar{\mu}$ is a complete measure on \bar{S} .
11	A signed measure can be decomposed into difference of two measures and the decomposition is unique. Prove this assertion.

SECTION D – K5 (CO4)

	Answer any ONE of the following (1 x 15 = 15)
12	If f is Riemann integrable and bounded over the finite interval $[a, b]$, then verify whether f is integrable and $R \int_a^b f dx = \int_a^b f dx$. What do you say about converse of the statement? Justify your claim with an example.
13	Let $[X, S, \mu]$ and $[Y, T, \nu]$ be the σ -finite measure spaces. For $V \in S \times T$, denote $\varphi(x)$ as $\nu(V_x)$, $\psi(y)$ as $\mu(V^y)$, for each $x \in X, y \in Y$. Then demonstrate how φ is S -measurable, ψ is T -measurable and $\int_X \varphi d\mu = \int_Y \psi d\nu$.

SECTION E – K6 (CO5)

	Answer any ONE of the following (1 x 20 = 20)
14	Establish the proof of the statement: Let f be a C' -mapping of an open set $E \subset R^{n+m}$ into R^n such that $f(a, b) = 0$ for a point $(a, b) \in E$ and $A = f'(a, b)$. Assume that A_x is invertible. Then there exist open sets $U \subset R^{n+m}$ and $W \subset R^m$, with $(a, b) \in U$ and $b \in W$, such that: (i) To every $y \in W$ there is a unique x such that $(x, y) \in U$ and $f(x, y) = 0$. (ii) If x is defined by $g(y)$, then g is a C -mapping of W into R^n , $g(b) = a$, $f(g(y), y) = 0$ for $y \in W$ and $g'(b) = -(A_x)^{-1} A_y$.
15	State Fatou's Lemma and validate it.

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$